最终一平均得到了每一对公司之间的相似度……
感觉也不复杂,但是不知不觉一天就过去了。凌志整理了一下数据,发给了客户。
“您好,相似度的计算已经搞好了,您看您还满意么?”
过了一会儿,客户回复道:
“[拱手]整理得太细致了,谢谢您。不过您是怎么计算相似度的呢?如果方便的话能不能告诉我一下,我想写进我的介绍推文里。”
“哦哦,其实也不复杂,我用的是词向量计算的,而词向量是用深度学习方法训练出来的……”
凌志仔细地打了一大段文字,大概介绍了一下原理,没有说得太细。实际上词向量的训练过程是深度神经网络根据词的上下文来推断出来的,比如说,“开心”这个词周围经常出现的词汇与“伤心”就截然不同。所以深度语义,本质上也是由他的上下文来决定的。这也是凌志大致解释给客户的内容。
至于如何根据上下文推导出词向量,上下文的范围界定到底有多广,凌志就没有细讲,讲了客户也不关心,他只会挑重点说。
“谢谢您哈,对了,其实我这边还有一大批数据需要计算相似度,您能不能教我使用代码呢?这样以后我就不用麻烦您了。”
教代码啊。凌志有些脑壳疼,倒也不是说不行,只不过教不是计算机行业的人运行代码可能会出现各种各样的小问题。但他也没有拒绝,这种需求都是常态,一般客户要了数据之后,如果想要代码,凌志都会免费给他,而且还耐心地教客户安装各种环境。
“也行,我给您发个文档,您先按里面的说明安装一下。”
凌志把以前写好的文档简单改改,发了过去。
过了一会儿。
&nensi包的时候报错了,……”
“哦哦,那可能是下载源的问题,……”
“这个地址斜杠后面是不是需要空格?……”
客户不断地询问着各种问题,凌志也耐心回答着,最后总算是帮客户搞定了。
“谢谢,麻烦您了。”
“不客气,应该的。”
凌志看看表,该吃晚饭了,反正已经加了客户微信,有什么事再说。
……
晚上7点,凌志拿起自己刚买的《字母表谜案》,准备进入自己的悬疑世界。看了没几页,手机震动了一下。凌志打开手机,发现客户又给自己发了信息:
“不好意思,晚上再打扰您一下,我觉得我之前设计的表格格式不太美观,因为我一开始也没想好,还得麻烦您再帮我排一下版。……”
之后凌志收到了客户发给自己的图例,表示按照这个格式来排版。
倒也不是很麻烦,凌志打开了自己的电脑,开始加班,很快就重新设计好了。
“哇塞,您太给力了,这么晚您还能及时帮我,太谢谢了。”
“没事没事,应该的。”
凌志想了想,又厚颜加了一句:
“如果您不嫌麻烦的话,可以给我个20字以上好评哦。”
“必须的,非常满意,必须好评。”
“嗯嗯,谢谢您支持[笑脸]”
应该算是结束了吧,凌志笑着摇了摇头。一般他不会主动要好评,除非感觉客户很满意的时候。想一想自己这习惯是什么时候养成的呢?
凌志不知道,但他想起了另外一些事。自己逛其他店面的时候,有时候咨询的问题多了,客服回复的速度就很慢,亦或简单地回应一句“做不了”,你在屏幕前面生闷气也没办法。太多的案例,历历在目。凌志不敢保证自己的服务百分百满意,但是他依然想让自己尽量做到最好,因为他不想成为自己一度很讨厌的那类人。所以即便是客户连自己的需求都没搞清楚,只要大体方向他能t到,剩下的